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Statistical mechanics of a Hopfield neural-network model in a transverse field
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We construct a soluble model to describe the retrieval properties of the quantum transverse Hopfield
model in neural networks. A set of equations for the order parameters describing retrieval and spin-
glass phases of the Hopfield model in a transverse field are obtained. Based on these equations, phase di-
agrams are examined and the memory storage capacity of the networks is analyzed as a function of the

temperature and transverse field.

PACS number(s): 64.60.Cn, 87.10.+e¢, 75.10.Hk

Since Hopfield’s work [1] on the modeling of neural
networks for associative memory, physical models of
neural networks have been extensively investigated
[2-16]. In many of the models, the network consists of N
neurons whose internal connections (synapses) are updat-
ed to facilitate the storage and the retrieval of informa-
tion. Usually the synapses are designed so that a given
set of states of the system becomes fixed attractors of its
dynamic evolution.

In the Hopfield model of a neural network, each neu-
ron is represented by two-state (active-passive) Ising spins
S;==x1. A set of p=aN uncorrelated patterns {&%}
{i=1,...,N,u=1,...,p} in which & is either +1 or
—1 with equal probability is encoded in the interaction
matrix by the Hebb rule,

=1 & e 1
Jij Nﬂglglgj . (1)

Here, the p patterns {£%} constitute the embedded
memories. The retrieval of a particular memory is
achieved when the system starting from some initial
configuration (imposed by an external stimulus) evolves
under its own dynamics to a stationary configuration
{S;}, which is strongly correlated with that memory.
Some of the investigations have concentrated on the abili-
ty of these networks to function as associative memories
which retrieve a complete stored information if an exter-
nal longitudinal field is exerted [17-20]. However, the
Hopfield model for N interacting neurons in transverse
field ', with Hamiltonian

H=—3J,SiS:~T3 S7, @)
ij i
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is a theoretical construct which introduces quantum
effects to a classical problem in a natural way [21]. Here
S7 and S are the Pauli matrices at the ith spin and T is a
transverse field which represents the tunneling frequency
of the neurons. Since a transverse field I" applied in the
spin system brings about a quantum effect by causing spin
flips, the requisite noncommutativity of operators in the
Hamiltonian creates a potentially difficult technical prob-
lem. On the other hand, the study of the models de-
scribed above is interesting not only in the context of
neural-network models but also in the context of the sta-
tistical mechanics of quantum disordered magnetic sys-
tems. The Hamiltonian defined in (1) and (2) with p=1is
an infinite-range Mattis model [22] in a transverse field
[23]. The transition can be driven by both temperature as
well as the transverse field. The critical behavior (ex-
ponents) for a d-dimensional system is the same as that of
the d-dimensional Ising system for finite temperature
transitions, and at 7=0 K is identical to that of a pure
Ising system in (d + 1) dimensions. The model (1) and (2)
with p > 1 represents an intermediate case. In the classi-
cal case (I'=0), van Hemmen [24] introduced and solved
a related model with p=2 and his mean-field equation
has been extended to arbitrary p by Provost and Vallee
[25]. However, as far as we know, up to now no studies
have made contact with the quantum version of above
models. In this paper, we will use a simple method to
study the effects of the transverse field on the retrieval
states of quantum Hopfield models.

Let us introduce the effective Hamiltonian for the ith
spin,

P, = —h,S?—TS¥ , (3)
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where the local field h; =3 ;J;;m; and m; is the average
magnetization at site j. The corresponding partition

function becomes
Z=Tre =2 cosh[B(h2+T?)1"2] )

where B is the inverse temperature. Then the average
magnetization m; at site i is given by the set of equations

m;=h,(h?+T2) "V Dtanh[B(h2+T2)1?] . (5)

When storing p patterns in the network, one monitors the
degree of associative recall of a single pattern u by the
overlap,

q“=N‘12§f’m,-(h,-,F) , u=1,...,aN . (6)
i

In the large-N limit, Eq. (6) can be written as an integral

over the distribution of local fields P(H*),

q"= [ dH*P(H")m(H"T) , (7)

where Hf=£&h;. We will limit ourselves to the thermo-
dynamic limit, and study the configuration {S;} having a
macroscopic overlap with only one of the stored patterns
(the first, say) and microscopic overlaps with all the other
p — 1 patterns. This Mattis-state solution is described by
the order parameter of the form g¢*=¢q6, or
q=(q,0,...,0) in the vector notation. Then, the local
field for pattern 1,

Hl=¢& 3 Jiim; )
J#D

can be split into two parts,

H!=q+§& 3 &g~ . 9)

k>1

Equation (9) acts as a Gaussian noise with mean g and
variance o given by
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To evaluate the sum of squares in Eq. (10), we first write
the overlaps with the uncondensed patterns using Eq. (6),
q"=N“‘2§£‘m,-[ 3 fqP+Er ",r]. (an
i p (Fk)
Here the single term (p=k) is small compared to the sum
over all the rest (p7k). We expand m;(h;,T’) to first or-
der in ¢* giving
k=pN—1 km. 2P T
q Z§,m,[2€,q,}
i p (Fk)
, (12)

+§5‘qkm,-’[ > §f~’q”,l“]

p (Fk)

where m/(h;,I')=dm;(h;,T)/dh;. The missing p=k term
in the argument of m;(T', 3, () §79”) only affects the
value m/(T', 3, £7¢”) to order O(1/N) which we neglect
by taking the argument to be the whole #;. We now
define the quantity

c=N"'3m/(h;,T), (13)

and the Edwards-Anderson order parameter Q,

Q=N"'3 mih,T). (14)

From Eqgs. (12)—(14), we have
(g*)P?=Q/N(1—c). (15)

From Egs. (10) and (15), the variance o2 of the local-field
distribution is given by

o’=aQ/(1—c)*. (16)

Because m %( h;,I') and m'(h;,I") are both even functions,
we can write the averages in Egs. (13) and (14) in terms of
H/! rather than 4;, and finally as integrals over the distri-

o= 3 (g")*. (100 bution of local fields P(H'). We have
k>1
J
g= [ @m) ™ 2e ™ 2dy(g+Vary) T2 +(g+Vary 1~ Ptanh (B[T2+(g +Vary)?]' 2} , (17

c= [ (2m) 12 24y (T T2+ (g +V ary )]~ Ptanh BT+ (g +Vary ]2}

+B(g+Vary [T*+(g+Vary)*] 'sech®(B[T*+(g+Vary)?]'/?}), (18)
0= [(2m) =12 2dy(q+Vary P[T?+(q+Vary ] tanh?(B[T2+(g +Vary)*1'} , (19)
r=Q/(1—c). (20)

Phase diagrams can be calculated from Eqgs. (17)-(20),
and the results reduce to those for the Hopfield neural-
network model discussed in Ref. [3] when I"=0.

We first investigate the phase transition of second or-
der from the disordered, paramagnetic phase (¢ =Q =0)
to the spin-glass phase (g =0, @+0). To derive an equa-
tion for the spin-glass transition temperature, we expand

[

Eqgs. (19) and (20) with ¢ =0, in powers of Q and r. The
transition temperature 7, is determined by

(1+Va)I' " 'tanh(B,T)=1 . (21)

In the classical case (I'=0), Eq. (21) yields the known re-
sult T, =1+Va [3].
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The transition from the spin-glass phase to the re-
trieval phase can be studied by numerically solving
(17)-(20), and is shown in Fig. 1, where the spin glass to
paramagnetic phase transition is also shown. As in the
second-order transition theory, critical storage capacity a
is determined from the condition of a sudden disappear-
ance of retrieval phase (g-0) existing with the spin-glass
phase (Q+0, ¢ =0) as a is changed with " and 8 kept
fixed. We now turn to an explicit discussion of phase dia-
gram (Fig. 1). Below the critical line T, the spin-glass
solutions appear. When crossing the line T, from above
Mattis retrieval states show up as local minima of the free
energy. At this point the overlap with the embedded pat-
terns jumps from zero to a finite macroscopic value. So
the system functions as an associative memory and the
critical storage capacity for a given temperature can be
read off through the line T),. On the other hand, we see
that the regions of the retrieval states decrease with the
increase of the strength of transverse field I', and when
I"'=1 the retrieval states disappear. In the present case,
the main effect of quantum fluctuations is reduction of
the critical storage capacity a beyond which no solution
with g0 exists.

So far, a Hopfield neural-network model with trans-
verse fields that induces tunneling among the neurons is
presented. The full phase diagram is obtained, and the
possibilities of the existence of the retrieval, paramagnet-
ic, and spin-glass phases are examined. Quantum fluctua-
tions make retrieval states unstable, and even the re-
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FIG. 1. T-a phase diagram for several values of transverse
field I". The spin-glass states appear below the line 7, and the
memory states below the line 77,.

trieval states, which depend strongly on I', can be des-
troyed. It is obvious that Egs. (17)-(20), which give the
expression for the dependence of critical storage on trans-
verse field for quantum Hopfield model, are brief and ap-
plicable.
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